OXIDATIVE STRESS LEVEL IN FEMALES WITH HEART DISEASES USING VITAMIN A, C AND E AS DETERMINANTS
Download our android mobile app for more materials
ORDER NOW
COMPLETE MATERIAL COST N2,500 Or $10. FRESH PROJECT MATERIAL COST 50,000 NAIRA FOR UNDERGRADUATE, OTHERS 100,000 -200,000 NAIRA.
Account Name : Host Link Global Services Ltd
ACCOUNT NUMBER: 0138924237
Account Name: Chi E-Concept Int’l
Account Name: 3059320631
Foreign Transaction For Dollars Payment :
Bank Name: GTBank
Branch Location: Enugu State,Nigeria.
Account Name: Chi E-Concept Int’l
Account Number: 0117780667.
Swift Code: GTBINGLA
Dollar conversion rate for Naira is 175 per dollar.
ATM CARD: YOU CAN ALSO MAKE PAYMENT USING YOUR ATM CARD OR ONLINE TRANSFER. PLEASE CONTACT YOUR BANK SECURITY FOR GUIDE ON HOW TO TRANSFER MONEY TO OTHER BANKS USING YOUR ATM CARD. ATM CARD OR ONLINE BANK TRANSFER IS FASTER FOR QUICK DELIVERY TO YOUR EMAIL . OUR MARKETER WILL RESPOND TO YOU ANY TIME OF THE DAY. WE SUPPORT CBN CASHLESS SOCIETY.
OR
PAY ONLINE USING YOUR ATM CARD. IT IS SECURED AND RELIABLE.
form>DELIVERY PERIOD FOR BANK PAYMENT IS LESS THAN 24 HOURS
CALL OUR CUSTOMERS CARE OKEKE CHIDI C ON : 08074466939,08063386834.
AFTER PAYMENT SEND YOUR PAYMENT DETAILS TO
08074466939 or 08063386834, YOUR PROJECT TITLE YOU WANT US TO SEND TO YOU, AMOUNT PAID, DEPOSITOR NAME, UR EMAIL ADDRESS,PAYMENT DATE. YOU WILL RECEIVE YOUR MATERIAL IN LESS THAN 2 HOURS ONCE WILL CONFIRM YOUR PAYMENT.
WE HAVE SECURITY IN OUR BUSINESS.
MONEY BACK GUARANTEE
ABSTRACT
Heart disease is associated with elevated oxidative stress via increased generation of reactive oxygen species (ROS), and decline in antioxidant defences. Increased oxidative stress is thought to play a role in the development of cardiovascular diseases. The present study was carried out to see the levels of vitamin C, vitamin E and total antioxidant (AO) in hypertensive female patients with heart disease. Twenty-two patients (all women) with history of Hypertension from outpatient clinic unit of the State Central Hospital, Benin City, Edo State, Nigeria where studied. Eight control subjects (all women) with no history of hypertension and heart diseases were studied. The raw group data of their age, weight, height, blood pressure and pulse rate of the subjects were obtained. They were selected on the basis of general physical examination Serum level of vitamin A, C and E were obtained using documented method. Serum levels of vitamin A,C, and E were 380.24±68.13 U/L and 135.69±21.32 U/L, 1.23±0.13 mg/dl and 1.20±0.09 mg/dl, 136.26±9.72 U/L and 185.41±1.84 U/L in experimental and control. Vitamin A shows significant increase with experimental when compared with control, but Vitamin C shows mild increase when experimental group was compared with control group, but did not attain significant at (p<0.05) and Vitamin E shows moderate significant decrease when experiment group compared with control group at (p<0.05). This study reveals a significant reduction in serum vitamin E level of hypertensive patients as compared to the controls with the mean vitamin C level showing no significant difference. In this research, the scientific data do not justify the use of antioxidant vitamin supplements for CVD risk reduction.
LIST OF TABLES
Table 4.1: shows the effect of hypertension
on the blood pressure, enzyme and non
enzyme antioxidants in hypertensive
female patients – – – – – – 62
TABLE OF CONTENTS
PAGE
Cover page – – – – – — – – -i
Title page – – – – – – – – – – -ii
Certification – – – – – – – – -iii
Dedication – – – – – – – – – -iv
Acknowledgements – – – – – – – – -v
Abstract – – – – – – – – – – -vi
List of tables and figure – – – – – – – -vii
Table of content – – – – – – – – -vii
CHAPTER ONE
1.1 INTRODUCTION – – – – – – – – –1
1.2 Aims and Objectives – – – – – – -5
1.3 Scope of study – – – – – – – – -6
1.4 Significance of study: – – – – – – -6
CHAPTER TWO
2.0 LITERATURE REVIEW – – – – – – – 7
2.1 HEART DISEASE – – – — – – 7
2.2 TYPES OF HEART DISEASE — – – – – – 8
2.2.2 Hypertensive heart disease — – – – – -8
2.2.3 Heart failure – – – – – – – – -8
2.2.4 Cor pulmonale or pulmonary heart disease — -9
2.2.5 Valvular heart disease – – – — — 9
2.2.6 Cerebrovascular disease – – – – – — -9
2.2.7 Congenital heart disease – – – — -10
2.3 Epidemiology of Cardiovascular Disease – – – -10
2.4 Risk factors – – – – – – — — -11
2.5 OXIDATIVE STRESS – – – – – — -13
2.6 Physiological Sources of Reactive Oxidant
Species in Cells – – – – – —- 13
2.6.1 Mitochondrial respiration as a source
of reactive oxidant species in cells – – – – -14
2.6.2 NADH/NADPH oxidase system as a source of
reactive oxidant species in the cell – – – – -17
2.6.3 Xanthine oxido-reductase system as a source of
reactive oxidant species in the cell – – – – – -20
2.6.4 NOS uncoupling as a source of reactive
oxidant species in the cell. Uncoupled NO – — 21
2.7 Reactive Oxidant Species Formation and
Cardiovascular Disease – – – – – — 21
2.7.1 Oxidative stress and endothelial
Dysfunction in aterosclerosis – – – - – – -24
2.7.2 Oxidative stress and hypertension – — – — 31
2.7.3 Oxidative stress and cardiovascular ischemia – — -33
2.7.4 Oxidative stress and heart failure – – – – -35
2.7.5 Oxidative stress and postoperative arrhythmias – – -39
2.8 Antioxidants and Cardiovascular Disease – -39
2.8.1 Antioxidants – – – – – — — -40
2.8.2 The Use of Antioxidants – – – – – — -42
2.8.3 Dietary Intervention and Risk of
Cardiovascular Disease – – – – – – – -42
2.8.4 Antioxidants and Cardiovascular Risk — – — -45
2.8.5 Vitamin C and Cardiovascular Disease — – — -48
2.8.6 Vitamin E and Cardiovascular Disease – — -51
CHAPTER THREE
3.0 MATERIALS AND METHOD – – – — -56
3.1 MATERIALS – – – – – – — — -56
3.1.1 Instruments – – – – – – – — -56
3.1.2 Apparatus and glass wares – – – – — -56
3.1.3 Reagents – – — – – – – — — -57
3.1.4 Specimen – – – – – – — -57
3.1.5 Blood Serum – – – — – – — — -57
3.2 METHODS – – – – – – — -57
3.2.1 Study group – – – – – — — -57
3.2.2 Clinical assessment – – – — — -58
3.2.3 Sample collection and preservation – – – – —58
3.3 SAMPLE ANALYSIS – – – – – — — -58
3.3.1 Serum vitamin E estimation – – – – — -58
3.3.2 Serum Vitamin A estimation – – – – — -60
3.3.3 Serum Vitamin C estimation – – – – — -60
3.4 STATISTICAL ANALYSIS – – – – — — -61
CHAPTER FOUR
4.0 RESULTS — – – – – – – -62
CHAPTER FIVE
5.0 DISCUSSION – – – – – – – – — 64
5.1 Conclusion – – – – – – – – – 67
References
CHAPTER ONE
1.1 INTRODUCTION
Heart disease(cardiovascular disease), defined as coronary artery disease, hypertensive heart disease, congestive heart failure, peripheral vascular disease, and atherosclerosis including cerebral artery disease and strokes, is the leading cause of death in the United States and disability in the world today, (Thom, 1989). In the United States, the heart disease death toll is nearly one million each year, and in 2002 the estimated cost of heart disease treatment was $326.6 billion, (Shekelle et al., 2003). To provide early prognosis and better therapies for preventing and curing these diseases, an understanding of the basic pathophysiologic mechanisms of heart disease is essential. Growing evidence indicates that oxdant stress production of reactive oxygen species (ROS) and other free radicals under pathophysiologic conditions is integral in the development of cardiovascular diseases (CVD).
Free radicals are molecules containing one or more unpaired electrons in atomic or molecular orbital, (Gutteridge et al., 2000). Reactive free radicals play a crucial part in different physiological processes ranging from cell signaling, inflammation and the immune defense, (Elahi et al., 2006). There is increasing evidence that abnormal production of free radicals lead to increased stress on cellular structures and causes changes in molecular pathways that underpins the pathogenesis of several important human diseases, including heart disease, neurological disease and cancer and in the process of physiological ageing, (Pacher 2008; Vassalle et al., 2008). One of the major contributors of oxidative stress is the reactive oxygen species (ROS) family of molecules. These include free radicals such as superoxide anion (O2-), hydroxyl radical (HO-), lipid radicals (ROO-) and nitric oxide (NO). Other reactive oxygen species, hydrogen peroxide (H2O2), peroxynitrite (ONOO-) and hypochlorous acid (HOCl), although are not free radicals but they have oxidizing effects that contribute to oxidative stress. ROS has been implicated in cell damage; necrosis and cell apoptosis due to its direct oxidizing effects on macromolecules such as lipids, proteins and DNA, (Izakovic et al., 2006). Production of one free radical can lead to further formation of radicals via sequential chain reactions, (Cronin et al., 2005).
Understanding the contribution of free radical stress in the pathogenesis of disease will allow us to study the development of oxidative stress; a condition that occurs due to an imbalance between cellular production of oxidant molecules and the availability of appropriate antioxidants species that defend against them. In physiological conditions, cells would increase activities of antioxidant enzymes and other antioxidant defenses to counteract occurrence of oxidative stress, (Brunzini et al., 2004). These include radical scavengers such as vitamin E, A, beta carotene and vitamin C, Manganese dependent superoxide dismutase such as manganese superoxide dismutase (Mn-SOD), Copper/Zinc superoxide dismutase (Cu/Zn SOD), glutathione peroxidase, glutathione reductae and catalase (CAT). Decreased risk of cardiovascular death has been associated with higher blood levels of vitamin C and E. In addition, vitamin C, vitamin E, and A have demonstrated antioxidant effects, including beneficial effects on oxidation of low-density lipoprotein. There is evidence that these vitamins affect other risk factors for CVD such as hypertension. Vitamin E may also reduce coronary artery blockage by decreasing blood platelet aggregation. Thus, it was reasonable to expect that supplementation with these antioxidants would decrease the risk of developing CVD. Large numbers of people are taking antioxidants with the expectation that they will prevent disease. As part of a natural defense system, antioxidants can mitigate the activity of free radicals and other oxidative species that have been implicated in the development of heart disease, (Krzanowski, 1991; Duthie et al., 1999). The epidemiologic and observational literature has suggested a beneficial effect of antioxidant-rich foods, as well as specific antioxidants, on the risk of CVD and stroke, (Asplund, 2002; Tribble, 1999). Because oxidative functions also contribute positively to the health of the cell by their participation in energy metabolism, biosynthesis, detoxification, and cellular signaling, a balance is clearly required between the pro-oxidants and the antioxidant defense system to maintain health, (German et al., 2001).
1.2 Aims and Objectives
The aim of this study is to determine the efficacy of three antioxidants, vitamin E, vitamin C, and A, for the prevention and treatment of cardiovascular disease (CVD) or modification of known risk factors for heart diseases in hypertensive female patients
Specifically, the objective of this study is to determine;
- The vitamin A level in hypertensive patient with heart disease.
- The vitamin C level in hypertensive patient with heart disease.